fisiología vegetal 2011

 Luisa Fernanda Garcia Sabogal.
 Alejandra Osorio Cerinza.
Profesora.

ROCIO STELLA SUAREZ.
"Una de las cosas más agradables de los problemas, es que muchos de ellos sólo existen en nuestra imaginación."

ALLEN, STEVE

bibliografias

·         NABORS W., Murray. Introducción a la botánica. 4 ed. España. Addison Wesley. 2006. 712 págs.
·         Berkaloff, A. Bourguet, J. Favard, P. Y J.C. Lacroiz. 1987. Biología y fisiología celular. Tomo II ed. Omega. Barcelona.
·         ELLON T. Weirer. Botánica. 5 ed. México. Editorial Limusa.1989.  720 Págs.
·         CURTIS Helena. Invitación a la Botánica. 5 ed. España. Medica panamericana. 2000. 520 págs.
·         Botánica Morfológica. Morfología de Plantas Vasculares - Facultad de Ciencias Agrarias, 2009 [fecha de consulta: 2 de septiembre del 2009]. Disponible en <www.biologia.edu.ar/botanica >.
·         Respuesta de dos clones de Pyrus calleryana a distintos medios de cultivo, setiembre 1992. Castillo A; Capdevielle, F.
·         La Biotecnología Aplicada a la Porducción de Ajo Semilla
Castillo A, Dalla Rizza M. Revista Oficial de INASE, Nº 3, Mayo 1999
·         Ajuste de un sistema de multiplicación in vitro para la especie nativa Aloysia
chamaedrifolia (Verbenacea), 1999. Castillo A., Davies P., Ceppa M., Del Pino G.,
Bonilla B.
·         Introducción al cultivo de especies aromáticas nativas de interés comercial, Tesis de Maestría, julio 2000. Director Dr: Victoriano Valpuesta, Tutor: Dr. Marco Dalla Rizza.
·         Avances de Investigación en Frutales de Carozo y Arándanos. Serie Actividades de Difusión Nº 237, Soria J.; Cabrera D.; Pisano J.;Castillo A. 11 de octubre de 2000.
·         Avances en experimentación de frutales alternativos: arándanos y otros berries. Serie Técnica N° 286, 14 de mayo 2002
·         Presentación de resultados experimentales de arándano, Jornada de divulgación 20 de febrero de 2004, Paysandú Uruguay
·         AR-VITRO®: un sistema de apoyo para el sector agrobiotecnológico de Uruguay, junio2004, Capdevielle, F.; Castillo, A. I Seminario de Arándanos y Frambuesas, Uruguay

  •   NOE, Laura  y  ABRIL, Adriana. Interacción entre calidad de restos vegetales, descomposición y fertilidad del suelo en el desierto del Monte de Argentina. Ecol. austral [online]. 2008, vol.18.
  • Brechelt, A. 2004. Manejo ecológico del suelo. Fundación Agricultura y Medio Ambiente (FAMA). Consultado Marzo 15, 2011.En:www.rap-al.org/articulos_files/Manejo_Ecologico_del_Suelo.pdf
  • JARAMILLO G, PAREJA A, ROJAS, GIRALDO E. 2002. Evaluación preliminar del estado de los recusos naturales en el departamento del Quindío. CRQ.
  • INSTITUTO GEOGRÁFICO AGUSTIN CODAZZI. 1999. Suelos del departamento del Quindío.
·         http://www.mapa.es/app/Condicional/Modulos/inicio.aspx?pg=1&lng=es
·         http://www.bibliociencias.cu/gsdl/collect/tesis/index/assoc/HASH8ec4.dir/doc.pdf 

Fotosíntesis

Podemos decir que la fotosíntesis es el proceso que mantiene la vida en nuestro planeta. Las plantas terrestres, las algas de aguas dulces, marinas o las que habitan en los océanos realizan este proceso de transformación de la materia inorgánica en materia orgánica y al mismo tiempo convierten la energía solar en energía química. Todos los organismos heterótrofos dependen de estas conversiones energéticas y de materia para su subsistencia. Y esto no es todo, los organismos fotosintéticos eliminan oxígeno al ambiente, del cual también depende la mayoría de los seres vivos de este planeta.

Hasta los descubrimientos de Van Helmont , hace ya 400 años, se aceptaba que los seres vivos necesitaban "ingerir" alimentos para sobrevivir. En el caso de las plantas, se pensaba que tomaban su alimento del suelo. Este científico plantó un pequeño sauce en una maceta y la regó periódicamente. Luego de 5 años el sauce había incrementado su peso en 75kg., mientras que la tierra de la maceta había disminuido su peso en sólo 70gr. Así concluyó que toda la "sustancia" de la planta se había originado del agua, no del suelo. Pasaron muchos años y muchos experimentos científicos hasta que se llegó a descubrir cómo era el proceso de fotosíntesis y aún hoy en día se continúan descubriendo detalles químicos y metabólicos, es decir, aún hoy hay pasos químicos que realizan los autótrofos que no conocemos.
A pesar de esto último estamos en condiciones de poder explicar algunos fundamentos que nos indican cómo hacen los productores para transformar la energía y la materia.
Las etapas de la fotosíntesis
La fotosíntesis ocurre en organelas específicas llamadas cloroplastos, que se encuentran en células fotosintéticas, es decir, en células de productores expuestas al sol. En plantas terrestres estas células están en hojas y tallos verdes (los tallos leñosos tienen células muertas que forman la corteza). Existen también algas fotosintéticas que no poseen cloroplastos, pues son organismos unicelulares procariontes (sin núcleo verdadero ni compartimientos celulares) y también realizan la fotosíntesis. Estas células, llamadas cianofitas o algas verde azules, son seguramente muy similares a los primeros organismos fotosintéticos que habitaron nuestro planeta y realizan la fotosíntesis en prolongaciones de su membrana plasmática y en su citoplasma.
El proceso de fotosíntesis ocurre en 2 etapas, la primera, llamada etapa fotodependiente, ocurre sólo en presencia de luz y la segunda, llamada etapa bioquímica o ciclo de Calvin, ocurre de manera independiente de la luz. Pero antes de comenzar a estudiar ambas etapas es conveniente ver algunas características de los cloroplastos que permiten la realización de la captación de energía lumínica.
En principio, los cloroplastos tienen pigmentos que son moléculas capaces de "capturar" ciertas cantidades de energía lumínica . Dentro de los pigmentos más comunes se encuentra la clorofila a y la clorofila b, típica de plantas terrestres, los carotenos, las xantóficas, fucoeritrinas y fucocianinas, cada uno de estos últimos característico de ciertas especies. Cada uno de estos pigmentos se "especializa" en captar cierto tipo de luz. 
Como sabemos el espectro lumínico que proviene del sol se puede descomponer en diferentes colores a través de un prisma, cada color corresponde a una cierta intensidad de luz, que puede medirse en longitudes de onda. Cada pigmento puede capturar un tipo distinto de longitud de onda ß.


Curtis 2003
En el esquema se muestran los espectros de absorción de la clorofila (a y b), carotenos, ficoeritrina y ficocianina. Como puede observarse cada pigmento tiene un pico de absorción característico. 
Pero para hacer más eficiente la absorción de luz las plantas utilizan sistemas "trampa" o fotosistemas, con un pigmento principal como la clorofila a o b y diferentes pigmentos accesorios. A través de estos sistemas los autótrofos pueden aprovechar mejor la energía lumínica.


Curtis 2003
Así, los fotosistemas cuentan con un centro de reacción ocupado generalmente por clorofila (a o b) en las plantas terrestres, hacia donde es dirigida la energía lumínica, como se verá a continuación. 
Antes de comenzar a describir los reacciones químicas que ocurren en la etapa fotodependiente es conveniente ubicarnos espacialmente en el lugar de la planta donde ocurren.
Como ya hemos dicho, los cloroplastos se ubican en las células expuestas a la luz, es decir, aquéllas partes de la planta que son fotosintéticamente activas. 
En el caso de las plantas superiores la fotosíntesis ocurre principalmente en las hojas, y dentro de éstas, en cloroplastos ubicados en células del parénquima, que es uno de los tejidos de la hoja. Las hojas, además, poseen pequeñas abertura o "estomas" , formadas por células que pueden agrandar o cerrar la abertura y que permiten, de este modo, regular la entrada o salida de agua y gases, como el oxígeno y dióxido de carbono.
Los cloroplastos son organelas formadas por una doble membrana externa y vesículas apiladas formando estructuras llamadas grana. Cada grana está formada por varios tilacoides. 



Curtis 2003


En la membrana de los tilacoides se ubican los pigmentos fotosintéticos, que pueden captar la energía lumínica y dar comienzo a la etapa fotodependiente.



Curtis 2003
Como ya se ha mencionado, la clorofila y otros pigmentos se ubican en los cloroplastos, dentro de la membrana tilacoide, en unidades llamadas fotosistemas. Cada unidad tiene numerosas moléculas de pigmentos que se utilizan como antenas para atrapar la luz. Cuando la energía lumínica es absorbida por uno de los pigmentos, se desprenden electrones que rebotan en el fotosistema hasta llegar al centro de reacción, la clorofila a. El fotosistema que reacciona primero ante la presencia de luz es el fotosistema I.



Curtis 2003
La estructura de la membrana tilacoide permite que los electrones, provenientes de la exitación fotoquímica de la clorofila sean recibidos por moléculas especializadas, llamadas aceptores, que sufren sucesivamente reacciones de óxido-reducción y transportan los electrones hasta un aceptor final, la coenzima NADP.
Para que se lleve a cabo la producción de ATP (energía química) y se reduzca la coenzima NADP es necesario que reaccione otro fotosistema asociado, el fotosistema II. En este se produce también la exitación fotoquímica de la clorofila, que libera electrones. Los electrones son transferidos de un aceptor a otro a través de una cadena de transporte que los guía hasta el fotosistema I, quedando de este modo restablecida la carga electroquímica de esta molécula. Simultáneamente, en el fotosistema II se produce la lisis o ruptura de una molécula de agua. Este proceso, también llamado fotooxidación del agua, libera electrones, que son capturados por el fotosistema II, oxígeno, que es liberado a la atmósfera a través de los estomas, y protones, que quedan retenidos en el espacio intratilacoideo.



Curtis 2003
Este esquema muestra cómo incide la luz en los fotosistemas y desencadena las reacciones de la etapa fotodependiente. Los productos de esta etapa, NADPH y ATP serán utilizados en la segunda etapa de la fotosíntesis.
En la etapa fotodependiente se producen dos procesos químicos que son decisivos para la producción final de glucosa, estos son la reducción de la coenzima NADP y la síntesis de ATP. El NADP se reduce a NADPH+H+ con los protones que libera la molécula de agua. La coenzima NADP  reducida aportará los protones necesarios para sintetizar la molécula de glucosa, mientras el ATP liberará la energía necesaria para dicha síntesis.
Asociada a la membrana tilacoide se encuentra la enzima ATP sintetasa (ó ATP asa) que es la responsable de la producción de ATP. Esta enzima es capaz de transportar protones a través de un canal ubicado en su interior y transformar la energía cinética de los protones en energía química que se conserva en el ATP . De esta forma, la enzima ATP sintetasa libera el gradiente electroquímico que se produce dentro del tilacoide y utiliza la energía de este gradiente para adicionar un grupo fosfato al ADP produciendo ATP. Por otra parte, los protones que ahora se encuentran el la matriz del cloroplasto, se unen a la coenzima NADP produciendo NADPH+H+. 



Curtis 2003
Dibujo esquemático de la disposición de los fotosistemas, algunos de los aceptores de electrones y la enzima ATP sintetasa. Observe que los protones se concentran en el espacio intratilacoideo y sólo atraviesan la membrana por la enzina ATP sintetasa. La energía liberada por el transporte de protones es utilizada para adicionar un grupo fosfato al ADP y producir ATP. Los protones se unen a la coenzima NADP y la reducen a NADPH+H+. Ambos productos, ATP y NADPH+H+ son utilizados en la siguiente etapa de la fotosíntesis. El oxígeno del agua es liberado a la atomósfera.
Etapa fotoindependiente o ciclo de Calvin
El ciclo de Calvin ocurre en el estroma o matriz del cloroplasto. Allí se encuentran las enzimas necesarias que catalizarán la conversión de dióxido de carbono (CO2) en glucosa utilizando los protones aportados por la coenzima NADP más la energía del ATP. El dióxido de carbono ingresa a traves de los estomas y llega hasta la molécula aceptora del ciclo, una pentosa  llamada ribulosa di fosfato, combinándose con esta mediante la acción de la enzima ribulosa bifosfato carboxilasa oxigenasa o rubisco. El primer producto estable de la fijación de CO2 es el ácido-3-fosfoglicérico ( PGA), un compuesto de 3 carbonos. La energía del ATP es utilizada para fosforilar el PGA y formar ácido 1,3 difosfoglicérico, el cual es reducido luego mediante la acción del NADPH+H+ a gliceraldehido-3-fosfato (PGAL). Una parte del gliceraldehido-3-fosfato es utilizada en el ciclo para sintetizar glucosa, mientras que el resto se utiliza para regenerar la ribulosa, que da comienzo a un nuevo ciclo.



Curtis 2003
En el esquema del ciclo se Calvin se encuentran cuantificadas las moléculas que intervienen. Así, se observa que son necesarias 6 moléculas de CO2, 12 NADH+H+ y 12 ATP para sintetizar una molécula de glucosa.
Una gran parte del PGAL se transforma en almidón (carbohidrato de reserva) en el estroma del cloroplasto. Otra parte del PGAL es exportado al citosol, donde se transforma en intermediario de la glucólisis. También se obtienen intermediarios de azúcares de gran importancia biológica, como la sacarosa. Este disacárico es la principal forma en que los azucares se transportan a través del floema, desde las hojas hasta los sitios de la planta donde son requeridos.
Los organismos que viven en ambientes con oxígeno y dependen de él para poder realizar sus funciones metabólicas se llaman aeróbicos. Sólo algunas pocas bacterias y hongos pueden sobrevivir en ambientes sin oxígeno, estos organismos se llaman anaeróbicos.
La radiación luminosa que llega a la tierra tiene diferentes intensidades, entre las que se encuentran los rayos ultra violetas y la luz visible. Esta última es capturada por los pigmentos fotosintéticos en forma de "pequeños paquetes" de energía conocidos como cuantos o fotones.
El CO2 pasa al interior de organismos unicelulares y de otros autótrofos acuáticos por difusión, mientras que en las plantas terrestres, que deben protegerse de la desecación, se utilizan los estomas.
Cuando una molécula recibe electrones o protones se reduce. Cuando cede electrones, protones u otros grupos químicos se oxida.
El NADP es la coenzima nitotinamín adenín di nucleótido fosfato. Su función es tomar protones y reducirse en la etapa fotodependiente y cederlos luego, oxidándose, en la etapa fotoindependiente.
El ATP (adenosín tri fosfato) es una molécula capaz de contener energía en sus enlaces fosfato-fosfato y liberarla permitiendo la realización de reacciones endergónicas (que requieren energía) como por ejemplo, la síntesis de moléculas. En la fotosíntesis esta energía se utiliza para la síntesis de glucosa.
Las enzimas son proteínas especializadas en catalizar las reacciones químicas en las células. Son sumamente específicas, es decir cada enzima sólo reconoce un sustrato con el cual se combina para formar un producto.
La Ribulosa di fosfato es un azúcar capaz de capturar el CO2 y así iniciar el ciclo de Calvin.
La glucólisis es una vía metabólica donde se oxida glucosa a ácido pirúvico y se produce ATP.

Crecimiento y desarrollo de las plantas


Las hormonas vegetales son reguladores químicos que participan en el crecimiento, el desarrollo y la actividad metabólica de las plantas. La respuesta a un "mensaje" regulador depende de numerosos factores, como la estructura química de la hormona, la identidad del tejido específico sobre el que actúa, cuándo y cómo es recibida y su efecto conjunto con el de otras hormonas.
Las sustancias que intervienen en la regulación del crecimiento de las plantas actúan en forma conjunta, jerárquica y coordinada. La interacción entre la hormona y el receptor genera una cascada de eventos, como la activación o desactivación de proteínas de la membrana celular, el movimiento de calcio, cloro y potasio a través de proteínas transportadoras específicas y cambios en el potencial de membrana y el pH en el citoplasma y en el medio externo. Estos procesos conforman una red de mensajes secundarios que amplifican la señal recibida y provocan una respuesta específica. Los principales tipos de hormonas vegetales son las auxinas, las citocininas, el etileno, el ácido abscísico y las giberelinas.
Las auxinas participan en la respuesta fototrópica de las plantas, la formación de raíces adventicias, la elongación de tallos y raíces. A través de la maduración de la pared del ovario, determinan el desarrollo de los frutos carnosos. Son responsables del efecto de dominancia apical, que consiste en la inhibición del crecimiento de las yemas axilares por parte del ápice del vástago. Además, en las plantas leñosas, desencadenan la actividad estacional del cambium vascular. Las auxinas se sintetizan, principalmente, en los meristemas apicales de los vástagos. Las hojas jóvenes, las flores, los embriones en desarrollo y los frutos también producen auxinas, pero en menor cantidad. La concentración de auxina en un tejido depende del balance entre su síntesis, su exportación o importación hacia otros tejidos y desde ellos y de su tasa de degradación.
La dominancia apical.
La auxina que se produce en el meristema apical del tallo se difunde hacia abajo, reprimiendo el crecimiento de las yemas axilares. Cuanto mayor sea la distancia entre el ápice y la yema axilar, menor será la concentración de auxina y, en consecuencia, menor será la represión del crecimiento de la yema.  Si el meristema apical se corta, eliminándose la producción de auxina, las yemas axilares quedan desinhibidas y comienzan a crecer vigorosamente.
Las citocininas son sintetizadas en las raíces. Estimulan la división celular, inhiben el envejecimiento de algunos órganos como las hojas y las flores y pueden revertir el efecto inhibidor de las auxinas en la dominancia apical.
Los estudios sobre la respuesta a distintas combinaciones de auxinas y citocininas indican que sus concentraciones relativas afectan el desarrollo de las células indiferenciadas que crecen en cultivo. Cuando ambas hormonas se encuentran en concentraciones aproximadamente iguales, las células permanecen indiferenciadas y forman una masa amorfa de tejido (callo). Cuando la concentración de auxina es más alta que la de citocinina, el tejido indiferenciado origina raíces organizadas. Con una concentración más elevada de citocinina, aparecen yemas. Así, el balance cuidadoso de las dos hormonas puede producir tanto raíces como yemas y, de este modo, una planta incipiente.

El etileno actúa como regulador del crecimiento y el desarrollo de las plantas. Interviene en la senescencia de las partes florales que sigue a la fecundación y en la maduración de los frutos. También es responsable de los cambios de color, textura y composición química que ocurren durante ese proceso. El principal regulador de la caída de la hoja es el etileno producido en la capa de abscisión. Algunos de los efectos de las auxinas sobre los frutos, las flores y la senescencia de las hojas están relacionados con la producción de esta sustancia. Además, el etileno es un efector de la dominancia apical. Las auxinas inducen la producción de etileno en las yemas axilares o cerca de ellas, en tanto que las citocininas pueden inhibirla.
El ácido abscísico tiene un papel importante en la abscisión, la dormición y en la regulación de la apertura y el cierre de los estomas. De modo más general, parece estar involucrado en la respuesta de las plantas a diversas condiciones de estrés, por ejemplo la sequía y la salinidad. Además, regula la actividad de diversas proteínas transportadoras de iones y la transcripción de genes, a través de varios factores de transcripción. Está presente en las semillas y las yemas de muchas especies.
Las giberelinas controlan el alargamiento en los árboles y los arbustos maduros, pero el ácido abscísico inhibe este efecto en el tallo floral. A su vez, esta inhibición es revertida por las citocininas. Las giberelinas pueden inducir también la diferenciación celular. En las plantas leñosas, estimulan la producción de floema secundario por parte del cambium vascular. El floema y el xilema se desarrollan en presencia de giberelinas y auxinas. Se cree que en las plantas intactas, las interacciones entre los dos tipos de hormonas determinan las tasas relativas de producción de floema y xilema secundarios. Las giberelinas están presentes en cantidades variables en todas las partes de las plantas; las concentraciones más altas se encuentran en las semillas inmaduras.
La influencia del ambiente en el desarrollo de las plantas
El fotoperíodo es el número de horas de luz en un ciclo de 24 horas. Las plantas capaces de detectarlo exhiben fotoperiodicidad. De acuerdo con su respuesta de floración a las variaciones del fotoperíodo, las plantas pueden agruparse en tres categorías: de días cortos, de días largos y neutras. Las plantas de días cortos florecen cuando el fotoperíodo es más corto que cierto período crítico, al comenzar la primavera o el otoño. Las plantas de días largos florecen si los períodos de luz son más largos que el período crítico, sobre todo en el verano. Las plantas neutras florecen independientemente del fotoperíodo. La iniciación fotoperiódica de la floración sólo tiene lugar si la planta pasó de su estado juvenil a una fase de "madurez para florecer".
Respuestas de distintas plantas a cambios en el fotoperíodo
Experimentos de fotoperiodicidad mostraron que el efecto del fotoperíodo sobre la floración depende del tipo de planta. Las plantas de día corto florecen sólo cuando el período de oscuridad excede cierto valor crítico. Así, el abrojo, por ejemplo, florece con 8 horas de luz y 16 horas de oscuridad. Si el período de 16 horas de oscuridad es interrumpido, aunque sea brevemente, como se muestra a la derecha, la planta no florece. La planta de día largo, por otra parte, que no florece con 16 horas de oscuridad, lo hace si el período de oscuridad se interrumpe. Las plantas de día largo florecen sólo cuando el período de oscuridad es menor que cierto valor crítico.
Uno de los principales fotorreceptores implicados en la fotoperiodicidad es el fitocromo, una proteína que existe en dos formas: Pr y Pfr. Se sintetiza en la forma Pr, que absorbe principalmente luz roja transformándose en Pfr. La forma Pfr absorbe principalmente luz roja lejana y es la forma biológicamente activa. Pr y Pfr son fotointerconvertibles. Cuando amanece o cuando la noche es interrumpida con un breve pulso de luz roja, la mayor parte del fitocromo Pr se convierte en la forma Pfr. Esto promueve la floración en las plantas de días largos y la inhibe en las de días cortos. El fitocromo también interviene en el desarrollo temprano de las plántulas. Cuando el extremo de la plántula alcanza la luz, se reduce el crecimiento del tallo, crecen las hojas y se desarrollan los cloroplastos (desetiolación). El fitocromo permite que las plantas, una vez desetioladas, detecten la presencia de plantas vecinas.
Los fitocromos.
Los fitocromos son sintetizados en la forma Pr. Cuando Pr absorbe luz roja, se transforma en Pfr, la forma activa que induce la respuesta biológica. Pfr se revierte a Pr cuando absorbe luz roja lejana (730 nm). En la oscuridad, Pfr lentamente se revierte a Pr o es degradado.
Los fitocromos y los criptocromos son los responsables de la sincronización de los relojes biológicos de las plantas por parte de la luz. El reloj biológico, constituido por proteínas que regulan la expresión de los genes que las producen, es un sistema cíclico de retroalimentación negativa cuyo circuito tiene 24 horas de duración.
 Crecimiento y movimientos de las plantas
El geotropismo es la capacidad de una planta para responder a la gravedad, de modo que el vástago crezca hacia arriba y las raíces hacia abajo. Al igual que el fototropismo, está controlado por las auxinas. Este proceso implica cuatro pasos secuenciales: la percepción de la gravedad, la producción de señales en células sensoras de la gravedad, la transducción de señales dentro de células sensoras y entre otras células y, finalmente, la respuesta. La distribución de los amiloplastos parece ser fundamental para la detección de la gravedad.
Muchas plantas responden al tacto. En los zarcillos, que responden con lentitud, la evidencia sugiere que intervienen las auxinas y el etileno. En el caso de respuestas más rápidas, como la de Mimosa pudica, se cree que el estímulo sensorial se traduce rápidamente a una señal eléctrica, semejante al impulso nervioso de los animales, que desencadena una señal química. Esta señal permeabiliza la membrana de las células motoras a los iones potasio y cloruro. Como consecuencia, el agua deja estas células que colapsan y así causan un movimiento de la hoja o del folíolo. En las plantas carnívoras como dionea, el impulso eléctrico que genera el contacto del insecto activaría una enzima que bombea H+ hacia las paredes de las células epidérmicas de la bisagra de la trampa. Esto provoca una expansión celular rápida que cierra la trampa.

Comunicación entre las plantas: mensajes químicos

Muchas angiospermas producen compuestos tóxicos o de mal sabor, que funcionan como defensas poderosas contra los animales herbívoros. En algunas especies, la producción de estos compuestos se inicia o aumenta en respuesta al daño infligido a la planta por insectos masticadores o grandes animales. Es posible que las plantas puedan enviar mensajes de advertencia a sus vecinas de la misma especie, porque las hojas dañadas liberan una sustancia volátil que, al alcanzar las hojas de otra planta, genera la síntesis de productos químicos defensivos. La complejidad de las interacciones entre las plantas, hasta hace algunos años consideradas inexistentes o meramente marginales, ha llevado a postular que las poblaciones vegetales crecen como entidades integradas.

Propagación de plantas por cultivo in vitro


una biotecnología que nos acompaña hace mucho tiempo
La expresión cultivo in vitro de plantas, significa cultivar plantas dentro de un frasco de vidrio en un ambiente artificial. Esta forma de cultivar las plantas tiene dos características fundamentales: la asepsia (ausencia de gérmenes, etc), y el control de los factores que afectan el crecimiento. El avance alcanzado por las ciencias biológicas ha permitido en los últimos años el estudio detallado de las plantas tanto a nivel celular como molecular, y en condiciones de laboratorio es posible actualmente reproducir todos los factores que puedan incidir en el crecimiento y desarrollo de las plantas. Este principio general se aplica también al cultivo in vitro de plantas. Haberlandt, un científico alemán, postuló a principios del siglo pasado que las plantas eran capaces de reproducir su crecimiento a partir de células aisladas, originando la hipótesis de la totipotencia celular en plantas. Sin embargo, este investigador no pudo demostrar en forma práctica su hipótesis, debido a que la mayoría de los componentes complejos que integran los medios de cultivo actuales todavía no habían sido descubiertos. Sería recién en la década del ´50 cuando se determina la importancia del balance hormonal en las plantas, con el descubrimiento de las hormonas vegetales más usadas en la actualidad.
Reproducir en condiciones de laboratorio todos los factores que conforman el ambiente de la planta en la naturaleza es técnicamente muy complejo. Por esa razón se realiza una simplificación de la realidad escogiendo aquellos factores que se puedan mantener controlados. Cuando no se realiza el estudio con todo el ser vivo sino con solamente una parte del mismo, se utiliza el término explante para indicar la parte del órgano ó tejido vegetal que se cultiva in vitro. A la dificultad de reproducir las condiciones naturales en condiciones de laboratorio, se debe añadir en este caso la dificultad de suministrar al explante todo aquello que antes obtenía del sistema completo. En resumen, el cultivo in vitro de plantas es una técnica que exige un control específico del ambiente, tanto físico como químico, en el que se sitúa al explante. Conviene, por tanto, conocer cuales son los principales factores que conforman dicho y que deberán ser controlados.
La micropropagación o propagación clonal, es una de las aplicaciones más generalizadas del cultivo in vitro, a través de la micropropagación, a partir de un fragmento (explante) de una planta madre, se obtiene una descendencia uniforme, con plantas genéticamente idénticas, denominadas clones. El explante más usado para los procesos de propagación in vitro son las yemas vegetativas de las plantas. Los frascos que contienen las plantas se ubican en estanterías con luz artificial dentro de la cámara de crecimiento, donde se fija la temperatura en valores que oscilan entre los 21 y 23°C, además de controlar la cantidad de horas de luz. Por su parte, el medio de cultivo se compone de una mezcla de sales minerales, vitaminas reguladores de crecimiento, azúcar, agua y agar. La composición del medio depende de la especie vegetal y de la etapa del proceso de micropropagación. Con finalidad puramente descriptiva se puede clasificar los principales factores no biológicos que afectaran al desarrollo del cultivo in vitro, incluyendo:

Ambiente químico
Composición del medio de cultivo
pH
Ambiente físico
temperatura
luz y fotoperíodo
humedad

Dentro del proceso de micropropagación diferenciamos varias fases o etapas:
Selección y Preparación de la planta madre Desinfección de las yemas de la planta y/o desinfección de semillas introducción del material seleccionado in vitro Multiplicación de brotes. Enraizamiento y Aclimatación. Esta secuencia de etapas abarca el ciclo completo de la multiplicación de plantas in vitro ; puede ser aplicada a diferentes especies vegetales, en cada caso se podrán incluir simplificaciones o cambios de acuerdo a las características de las plantas, pero en términos generales son comunes al proceso de propagación in vitro.

FASE 0:
PREPARACIÓN DE LA PLANTA MADRE
Para poder establecer el cultivo en condiciones de asepsia, se deben obtener explantes con un nivel nutricional y un grado de desarrollo adecuado. Para obtener estos explantes es recomendable mantener a las plantas madre, es decir la planta donadora de yemas, durante un período de tiempo que puede oscilar entre unas semanas o varios meses en un invernadero bajo condiciones controladas. En ese ambiente se cultiva la planta en condiciones sanitarias óptimas y con un control de la nutrición y riego adecuados para permitir un crecimiento vigoroso y libre de enfermedades.

FASE 1:
DESINFECCIÓN DEL MATERIAL VEGETAL
Una vez elegida la planta madre, se extraerán los fragmentos a partir de los cuales se obtendrán los explantes. Los explantes pueden ser yemas, trozos de hojas, porciones de raíces, semillas, etc. Antes de extraer los explantes se hará una desinfección de los fragmentos de planta madre para eliminar los contaminantes externos. Los contaminantes más comunes son los hongos y las bacterias que habitan en forma natural en el ambiente. Una vez desinfectado el material vegetal, se debe mantener en condiciones de asepsia. A efectos de obtener las condiciones de asepsia, se trabajará en cabinas de flujo laminar para extraer los explantes a partir del material vegetal. Estos explantes se introducirán en un tubo de cultivo conteniendo medio de iniciación para poder controlar la sanidad y la viabilidad, luego de realizar la desinfección del material con hipoclorito de sodio (agua clorada comercial), pura o diluída durante un período de 5 a 15 minutos, seguido por 3 a 4 enjuagues en agua esterilizada.

FASE 2:
INTRODUCCIÓN DEL MATERIAL IN VITRO
Luego de la desinfección superficial, las semillas o las yemas dependiendo del material seleccionado, se ponen en medio de cultivo estéril. En un período de una semana o quince días, comienza el proceso de germinación o regeneración de nuevos tejidos vegetales, iniciando el ciclo de cultivo in vitro.

FASE 3:
MULTIPLICACIÓN DE LOS BROTES
Durante esta fase se espera que los explantes que sobrevivieron la FASE 1 y 2 originen brotes (de procedencia axilar o adventicia) con varias hojas. En la base de
cada hoja hay una yema que se desarrollará luego de ser puesta en contacto con el medio de cultivo. Periódicamente estos nuevos brotes se deben subcultivar en un nuevo medio mediante divisiones y resiembras en tubos de cultivo u otros recipientes adecuados. Estas operaciones se realizan en la cámara de flujo laminar o en un lugar aislado que nos permita mantener las condiciones de asepsia. De esta forma aumenta el número de plantas en cada repique o división de las plantas. El número de plantas que se obtiene dependerá de la especie vegetal y de las condiciones del medio de cultivo. El número de plantas que se obtiene por la vía de la micropropagación permite alcanzar incrementos exponenciales, considerando que todos los factores que afectan el crecimiento hayan sido optimizados.

FASE 4:
ELECCIÓN DE UN MEDIO DE ENRAIZAMIENTO DE LOS EXPLANTOS
Para enraizar los explantes se utilizan principalmente plantines individuales de un tamaño aproximado de 2 centímetros. Los brotes obtenidos durante la fase de multiplicación se transfieren a un medio libre de reguladores de crecimiento o que solo contenga hormonas del tipo auxinas. Algunas especies de plantas no necesitan pasar por esta etapa y emiten sus raíces en el mismo medio de cultivo donde desarrollan yemas nuevas, por lo tanto el proceso de multiplicación y enraizamiento transcurren en forma simultánea.

FASE 5:
ACLIMATACIÓN DE LOS EXPLANTOS ENRAIZADOS
Los explantes recién enraizados son muy sensibles a los cambios ambientales, de manera que el éxito o el fracaso de todo el proceso depende de la aclimatación. En
esta etapa las plantas sufrirán cambios de diferente tipo que permitirán la adaptación de las mismas a vivir en condiciones naturales. En el momento en que se extraen los explantes o plantines enraizados de los frascos, están poco adaptados a crecer en un invernáculo, ya que estos explantes han enraizado y crecido en ambientes con una humedad relativa muy elevada y generalmente tienen estomas (estructuras responsables de regular la transpiración y pérdida de agua en la planta) que no son completamente funcionales frente a descensos de la humedad relativa, y por lo tanto demasiado lentos para evitar la desecación del explante. Por otra parte, crecer en ambientes tan húmedos también su le implicar la falta de una cutícula con cera bien desarrollada, que representa la barrera física para evitar la perdida de agua a lo largo de toda la superficie de la planta. La siguiente lista presenta una comparación de las características de una planta en condiciones de laboratorio (in vitro) respecto a una planta en condiciones naturales

No realiza fotosíntesis
Crecimiento en condiciones controladas
Crecimiento en condiciones de asepsia
Alta humedad relativa
Estomas no funcionales
Ausencia de pelos radiculares
Ausencia de cera en la cutícula
Realiza fotosíntesis
Crecimiento en condiciones no controladas
Exposición a los patógenos y gérmenes del ambiente
Humedad relativa variable
Estomas funcionales
Presencia de pelos radiculares
Presencia de cera en la cutícula

Los plantines enraizados, deben ser aclimatados a las condiciones de humedad del invernadero disminuyendo progresivamente la humedad relativa e incrementando progresivamente la intensidad de luz. Estos plantines se plantarán en contenedores (almacigueras) cubiertos por un plástico, para mantener la humedad relativa elevada. La elección de un sustrato con buenas características físicas, es clave para el éxito de esta etapa. Para el trasplante, elegimos un sustrato suelto, poroso, con mezcla de arena turba, cáscara de arroz quemado , para permitir un desarrollo y crecimiento de raíces muy rápido. Las mezclas son diferentes y muy variadas de acuerdo a la especie con la que estamos trabajando. Luego de retirar cuidadosamente el agar de las raíces para evitar dañarlas, los plantines se enjuagan y se colocan en almacigueras con la mezcla de sustratos seleccionada y cubiertos con nylon. Todos los días se debe controlar el nivel de humedad en las almacigueras. Si es necesario, se aplica un riego con una pulverizadora manual, para mantener un ambiente húmedo a nivel del sustrato. A los 15 días del trasplante, se puede comenzar a levantar la cobertura de nylon en las horas de menor calor( temprano en la mañana o en la última hora de la tarde). Al comienzo las plantas se dejan media hora por día destapadas. A la semana siguiente se dejan destapadas durante una hora. Al mes del trasplante, se dejan tapadas durante la noche y si hay crecimiento de nuevas hojas, las plantas pueden permanecer destapadas. Las condiciones del cultivo in vitro , generan cambios en algunos aspectos anatómicos y fisiológicos de las plantas, por esta causa, durante la aclimatación, los cambios deben ser muy graduales, para minimizar el estrés y tener mayor tasa de sobrevivencia. Desde el año 1991, el Laboratorio de Cultivo de Tejidos de la Unidad de Biotecnología de INIA, localizado en la Estación Experimental “Las Brujas”, ha estado trabajando en el ajuste de sistemas de multiplicación in vitro para diversas especies. El objetivo de estos trabajos de investigación es incorporar la micropropagación, como herramienta a los programas de mejora genética de INIA, en diferentes especies para acelerar y optimizar los procesos de evaluación a campo. Las especies vegetales estudiadas han sido: papa, boniato, ajo, frutilla, manzano, ciruelo, duraznero, peral, vid, frambuesa, zarzamora, arándanos, eucaliptos, marcela, especies aromáticas, especies forrajeras y otras.

A través de la propagación in vitro se ha podido disponer de material vegetal en diversas especies para su evaluación rápida. En especies como papa y frutilla, esta técnica está incorporada al esquema de selección y propagación del programa nacional de mejoramiento de hortalizas, todos los años se introducen clones de interés, obtenidos a partir de cruzamientos controlados. La multiplicación in vitro, permite la obtención de material con condiciones de sanidad superiores a los obtenidos por vía convencional. Las especies leñosas como los frutales de hoja caduca y especies forestales, en general necesitan medios de cultivo más complejos, la respuesta a las condiciones de cultivo resulta más lenta que en las especies herbáceas. A pesar de las dificultades que plantean, se ha desarrollado y adaptado mucha experiencia para varios materiales, principalmente en portainjertos de diversas especies de frutales. Desde el año 2001 se están llevando a cabo diversos convenios de vinculación tecnológica con empresas e instituciones que agrupan a productores, obteniéndose resultados experimentales, a escala piloto de producción, muy importantes tanto para el avance de los proyectos de investigación como para el desarrollo de nuevas capacidades productivas, utilizando biotecnologías, en los sectores viveristas y semilleristas. A principios del año 2004 se estableció el primer sistema de franquicia para utilizar a escala comercial un protocolo de propagación in vitro de plantas de arándanos, como forma de apoyar la transferencia del paquete tecnológico ajustado por INIA hacia los laboratorios comerciales uruguayos. Con este mecanismo se ha buscado armonizar la demanda de plantas por parte de los productores interesados en este nuevo rubro y el interés de laboratorios comerciales y viveristas por ampliar losproductos con calidad verificable que son ofrecidos a través de sus procesos de
multiplicación de plantas.